已知,如图,矩形ABCD,AB长8cm,对角线比AD边长4cm.求AD的长及点A到BD的距离AE的长.

问题描述:

已知,如图,矩形ABCD,AB长8cm,对角线比AD边长4cm.求AD的长及点A到BD的距离AE的长.

∵四边形ABCD是矩形,
∴∠BAD=90°,
设AD=xcm,则BD=x+4(cm),
∵AB2+AD2=BD2
∴82+x2=(x+4)2
解得:x=6,
∴AD=6cm,BD=10cm,
∴点A到BD的距离AE=

AB•AD
BD
=4.8(cm).