已知xyz=1.x2+y2+z2=16.求1/xy+2z+1/yz+2x+1/xz+2y的值
问题描述:
已知xyz=1.x2+y2+z2=16.求1/xy+2z+1/yz+2x+1/xz+2y的值
答
如果是 xyz=1,x+y+z=2,x^2+y^2+z^2=16,求1/xy+2z+1/yz+2x+1/xz+2y应该是原式 = ( 1/xy + 2z ) + ( 1/yz + 2x ) + (1/xz + 2y )通分 = (z+2xyzz)/xyz + (x+2xxyz)/xyz + (y+2xyyz)/xyz化简 = ( x+y+z+ 2xyz(x+y+z...