组合数求解:C(0,2014)+C(2,2014)+C(4,2014).+C(2014,2014)=?

问题描述:

组合数求解:C(0,2014)+C(2,2014)+C(4,2014).+C(2014,2014)=?

C(0,2014)+C(2,2014)+C(4,2014).+C(2014,2014)
=(1+1)^2014
=2^2014那2^0*C(0,2014)+2^2*C(2,2014)+2^4*C(4,2014)......+2^2014*C(2014,2014)=?2^0*C(0,2014)+2^【1】*C(2,2014)+2^【2】*C(4,2014)......+2^2014*C(2014,2014)=(2+1)^2014=3^2014可是我学的是2^0*C(0,2014)+2^1*C(1,2014)+2^2*C(2,2014)+2^3*C(3,2014)......+2^2014*C(2014,2014)=(2+1)^2014=3^2014而题只给偶数了,这该怎么办?谢谢.2^0*C(0,2014)+2^2*C(2,2014)+2^4*C(4,2014)......+2^2014*C(2014,2014)=2^0*C(0,2014)+2^2*C(2,2014)+2^4*C(4,2014)......+2^2014*C(2014,2014)+2^1*C(1,2014)+2^3*C(3,2014)+。。。+2^2013*C(2013,2014)-2^1*C(1,2014)+2^3*C(3,2014)+。。。+2^2013*C(2013,2014)=(2+1)^2014-2^1*C(1,2014)-2^3*C(3,2014)+。。。-2^2013*C(2013,2014)(2-1)^2014=2^0*C(0,2014)+2^2*C(2,2014)+2^4*C(4,014)......+2^2014*C(2014,2014)-2^1*C(1,2014)-2^3*C(3,2014)+。。。-2^2013*C(2013,2014)=1则 2^0*C(0,2014)+2^2*C(2,2014)+2^4*C(4,2014)......+2^2014*C(2014,2014)=1+2^1*C(1,2014)+2^3*C(3,2014)+。。。+2^2013*C(2013,2014)A=1+BA-B=1A+B=(2+1)^2014A=(3^2014+1)/2