已知正项数列{an}的前n项和为Sn,对任意n属于N*都有(a1)3次方+(a2)3次方+(a3)3次方+…+an3次方...
问题描述:
已知正项数列{an}的前n项和为Sn,对任意n属于N*都有(a1)3次方+(a2)3次方+(a3)3次方+…+an3次方...
已知正项数列{an}的前n项和为Sn,对任意n属于N*都有(a1)3次方+(a2)3次方+(a3)3次方+…+an3次方=Sn平方.(1)求证:(an)平方=2Sn-an(2)求数列{an}的通项公式
答
1a1^3=a1^2 因此a1=1 满足a1^2=2S1-a1n>1 an^3=Sn^2-S[n-1]^2=an*(Sn+Sn-1)an^2=Sn+Sn-1=2Sn-an2n>=2an^2=2Sn-an a(n-1)^2=2Sn-1-a(n-1) 两式相减 an^2-an-1^2=2an-an+an-1an-an-1=1a1=1 因此an=n