在三角形ABC中,AB=1,BC=2则角C的取值范围是?

问题描述:

在三角形ABC中,AB=1,BC=2则角C的取值范围是?
因为c=AB=1,a=BC=2,b=AC
根据两边之和大于第三边,两边之差小于第三边可知
1<b<3,根据余弦定理
cosC=(a²+b²-c²)/2ab
=(4+b²-1)/4b
=(3+b²)/4b
=3/4b+b/4

cosC=(a²+b²-c²)/2ab
=(4+b²-1)/4b
=(3+b²)/4b
=3/4b+b/4>=2√(3/4b*b/4)=√3/2 当3/4b=b/4即b=√3时取得最小值
而cosC>=√3/2
所以0