(1)如图①,BD、CD是∠ABC和∠ACB的角平分线且相交于点D,请猜想∠A与∠BDC之间的数量关系,并说明理由; (2)如图②,BD、CD是∠ABC和∠ACB外角的平分线且相交于点D.请猜想∠A与∠BDC之
问题描述:
(1)如图①,BD、CD是∠ABC和∠ACB的角平分线且相交于点D,请猜想∠A与∠BDC之间的数量关系,并说明理由;
(2)如图②,BD、CD是∠ABC和∠ACB外角的平分线且相交于点D.请猜想∠A与∠BDC之间的数量关系,并说明理由.
答
(1)∵BD、CD是∠ABC和∠ACB的角平分线,
∴∠DBC=
∠ABC,∠DCB=1 2
∠ACB,1 2
∵∠ABC+∠ACB=180°-∠A,
∠BDC=180°-∠DBC-∠DCB=180°-
(∠ABC+∠ACB)=180°-1 2
(180°-∠A)=90°+1 2
∠A,1 2
∴∠BDC=90°+
∠A.1 2
(2)∵BD、CD是∠ABC和∠ACB外角的平分线,
∴∠CBD=
(∠A+∠ACB),∠BCD=1 2
(∠A+∠ABC),1 2
∵∠ABC+∠ACB=180°-∠A,
∠BDC=180°-∠CBD-∠BCD=180°-
(∠A+∠ACB+∠A+∠ABC)1 2
=180°-
(2∠A+180°-∠A)=90°-1 2
∠A.1 2
即∠BDC=90°-
∠A.1 2