x^2y-y^2z+xz^2-x^2z+xy^2+yz^2-2xyz

问题描述:

x^2y-y^2z+xz^2-x^2z+xy^2+yz^2-2xyz

x^2y-y^2z+xz^2-x^2z+xy^2+yz^2-2xyz=(x&sup2 y-x&sup2 z)+(xz&sup2+xy&sup2-2xyz)-(y&sup2 z-yz&sup2)=x&sup2(y-z)+x(y&sup2-2yz+z&sup2)-yz(y-z)=x&sup2(y-z)+x(y-z)&sup2-yz(y-z)=(y-z)[x&sup2+x(y-z)-yz]=(y-z...