如图一边长为30cm的正方形铁皮,四角各截去一个大小相同的小正方形,然后折起来做成一个无盖的长方体盒子,小盒子的容积V(单位:cm3)是关于截去的小正方形的边长x(单位:cm)的函

问题描述:

如图一边长为30cm的正方形铁皮,四角各截去一个大小相同的小正方形,然后折起来做成一个无盖的长方体盒子,小盒子的容积V(单位:cm3)是关于截去的小正方形的边长x(单位:cm)的函数.写出V关于x的函数式,x为多少时小盒子的容积最大?最大容积是多少?

设小正方形边长为x,铁盒体积为V.
V=(30-2x)2•x=4x3-120x2+900x.
V′=12x2-240x+900=12(x-5)(x-15).
∵30-2x>0,
∴0<x<15.
∴x=5时,Vmax=2000.
x为8时小盒子的容积最大,最大容积是2000cm3