1^2/1^3-(1^2+2^2)/(1^3+2^3)+.-(1^2+2^2+...+80^2)/(1^3+2^3+.+80^3)=?

问题描述:

1^2/1^3-(1^2+2^2)/(1^3+2^3)+.-(1^2+2^2+...+80^2)/(1^3+2^3+.+80^3)=?
24*(1/2*3+1/4*5+.+1/20*21)-(1/1^2+1/(1^2+2^2)+.+1/(1^2+2^2+.+10^2))

1^2+2^2+.n^2=n(n+1)(2n+1)/61^3+2^3)+.n^3=n^2*(n+1)^2/4(1^2+2^2+.n^2)/(1^3+2^3)+.n^3)=n(n+1)(2n+1)/6/n^2*(n+1)^2/4=2(2n+1)/3n(n+1)=2/3{1/n+1/(n+1)}1^2/1^3-(1^2+2^2)/(1^3+2^3)+.-(1^2+2^2+...+80^2...最后一道题怎么做啊,谢谢啦1^2+2^2+.....n^2=n(n+1)(2n+1)/6,1/(1^2+2^2+.....n^2)=6/n(n+1)(2n+1)1/n(n+1)(2n+1)=1/n+1/(n+1)-4/(2n+1)24*(1/2*3+1/4*5+....+1/20*21)-(1/1^2+1/(1^2+2^2)+.....+1/(1^2+2^2+.....+10^2))=24*(1/2-1/3+1/4-1/5+....+1/20-1/21)-6( 1+1/2-4/3+1/2+1/3-4/5+.....+1/10+1/11-4/21)=24*(1/2-1/3+1/4-1/5+....+1/20-1/21)-24(1/4+1/8-1/3+1/8+1/12-1/5+.....+1/40+1/44--1/21)=24*{(1/2+1/4+....+1/20)-(1/3+1/5+1/7+....+1/21)}-24(1/4+1/8+1/8+1/12+1/12+.....+1/40+1/44)-(1/3+1/5+1/7+.....+1/21)}=24{1/2-1/4-1/44}=60/11