已知数列{an}:12,13+23,14+24+34,15+25+35+45,…,那么数列{bn}={1anan+1}前n项的和为(  ) A.4(1-1n+1) B.4(12-1n+1) C.1-1n+1 D.12-1n+1

问题描述:

已知数列{an}:

1
2
1
3
+
2
3
1
4
+
2
4
+
3
4
1
5
+
2
5
+
3
5
+
4
5
,…,那么数列{bn}={
1
anan+1
}
前n项的和为(  )
A. 4(1-
1
n+1
)

B. 4(
1
2
-
1
n+1
)

C. 1-
1
n+1

D.
1
2
-
1
n+1

数列{an}的通项公式为an=

1
n+1
+
2
n+1
+
3
n+1
+…+
n
n+1
=
n(n+1)
2(n+1)
=
n
2

数列{bn}={
1
anan+1
}
的通项公式为bn=
1
anan+1
=
2
n
2
n+1
=4(
1
n
-
1
n+1

其前n项的和为4[(
1
1
-
1
2
)+(
1
2
-
1
3
)+(
1
3
-
1
4
)+…+(
1
n
-
1
n+1
)]=4(1-
1
n+1
)

故选A