已知数列{an}:12,13+23,14+24+34,15+25+35+45,…,那么数列{bn}={1anan+1}前n项的和为( ) A.4(1-1n+1) B.4(12-1n+1) C.1-1n+1 D.12-1n+1
问题描述:
已知数列{an}:
,1 2
+1 3
,2 3
+1 4
+2 4
,3 4
+1 5
+2 5
+3 5
,…,那么数列{bn}={4 5
}前n项的和为( )1
anan+1
A. 4(1-
)1 n+1
B. 4(
-1 2
)1 n+1
C. 1-
1 n+1
D.
-1 2
1 n+1
答
数列{an}的通项公式为an=
+1 n+1
+2 n+1
+…+3 n+1
=n n+1
=n(n+1) 2(n+1)
n 2
数列{bn}={
}的通项公式为bn=1
anan+1
=1
anan+1
•2 n
=4(2 n+1
-1 n
)1 n+1
其前n项的和为4[(
-1 1
)+(1 2
-1 2
)+(1 3
-1 3
)+…+(1 4
-1 n
)]=4(1-1 n+1
)1 n+1
故选A