sin(-a)sin【5/(2-a)】tan(a-2π)/cos【a-(π/2)】cos【a-(3π/2)】-tan(π-a)tan【(3π/2)-a】tanα=1/3 化简求值{sin(-a)sin【(5/2)-a】tan(a-2π)}/{cos【a-(π/2)】cos【a-(3π/2)】-tan(π-a)tan【(3π/2)-a】}不好意思哈,应该是这样

问题描述:

sin(-a)sin【5/(2-a)】tan(a-2π)/cos【a-(π/2)】cos【a-(3π/2)】-tan(π-a)tan【(3π/2)-a】
tanα=1/3 化简求值{sin(-a)sin【(5/2)-a】tan(a-2π)}/{cos【a-(π/2)】cos【a-(3π/2)】-tan(π-a)tan【(3π/2)-a】}不好意思哈,应该是这样

原式=(-sina)×sin【5/(2-a)】×tana÷cos【(π/2)-a】÷cos【(3π/2)-a】+tana×tan【(π/2)-a】
=-sina×sin【5/(2-a)】×tana÷sina÷(-sina)+1
=sin【5/(2-a)】×(sina÷cosa)÷sina+1
=sin【5/(2-a)】÷cosa+1
化简到此,题目中sin【5/(2-a)】应为sin【(5π/2)-a】,这样的话,继续化简下去就是:
=sin【(5π/2)-a】÷cosa+1
=sin【(π/2)-a】÷cosa+1
=cosa÷cosa+1
=2

sin(-a)sin【(5π/2)-a】tan(a-2π)/cos【a-(π/2)】cos【a-(3π/2)】-tan(π-a)tan【(3π/2)-a】
=-sinasin【(π/2)-a】tana/cos【π/2-a】cos【π/2+a】-(-tana)tan【2π-(π/2+a)】
=-sinacosatana/sina(-sina)+tana【-tan2(π/2+a)】
=-sinacosatana/sina(-sina)+tanacota
=-sinacosatana/sina(-sina)+tanacota
=-sinasina/sina(-sina)+1
=1+1
=2
经化简函数的值与tanα无关

sin(-a)sin【(5π/2)-a】tan(a-2π)/cos【a-(π/2)】cos【a-(3π/2)】-tan(π-a)tan【(3π/2)-a】
=-sinasin【(π/2)-a】tana/cos【π/2-a】cos【π/2+a】-(-tana)tan【2π-(π/2+a)】
=-sinacosatana/sina(-sina)+tana【-tan2(π/2+a)】
=-sinacosatana/[sina(-sina)+tanacota}
=-sinacosatana/{sina(-sina)+1}
=-sinasina/{cosacosa}
=tana tana
=1/9

第二个“sin【5/(2-a)】”有错误,请核实。解答如下:
sin(-a)sin【(5π/2)-a】tan(a-2π)/cos【a-(π/2)】cos【a-(3π/2)】-tan(π-a)tan【(3π/2)-a】
=-sinasin【(π/2)-a】tana/cos【π/2-a】cos【π/2+a】-(-tana)tan【2π-(π/2+a)】
=-sinacosatana/sina(-sina)+tana【-tan2(π/2+a)】
=-sinacosatana/sina(-sina)+tanacota
=-sinacosatana/sina(-sina)+tanacota
=-sinasina/sina(-sina)+1
=2

sin(-a)sin【5/(2-a)】tan(a-2π)/cos【a-(π/2)】cos【a-(3π/2)】-tan(π-a)tan【(3π/2)-a】=-sin(a)sin【5/(2-a)】tan(a)/cos【(π/2)-a】cos【(3π/2)-a】-tan(a)tan(π/2-a)
=-sin(a)sin【5/(2-a)】tan(a)/sin(a)cos(a)-tan(a)cot(a)
=-sin【5/(2-a)】tan(a)/cos(a)-tan(a)cot(a)