如果a,b,c满足a2+2b2+2c2-2ab-2bc-6c+9=0,则abc等于(  ) A.9 B.27 C.54 D.81

问题描述:

如果a,b,c满足a2+2b2+2c2-2ab-2bc-6c+9=0,则abc等于(  )
A. 9
B. 27
C. 54
D. 81

a2+2b2+2c2-2ab-2bc-6c+9,
=(a2-2ab+b2)+(b2-2bc+c2)+(c2-6c+9),
=(a-b)2+(b-c)2+(c-3)2=0,
∴(a-b)2=0,(b-c)2=0,(c-3)2=0,
∴a=b,b=c,c=3,即a=b=c=3.
∴abc=27.
故选B.