已知cos(π/2-a)=2*1/2 cos(3π/2+B),3*1/2 sin(3π/2-a)=-2*1/2 sin(π/2+B),求a,b的值
问题描述:
已知cos(π/2-a)=2*1/2 cos(3π/2+B),3*1/2 sin(3π/2-a)=-2*1/2 sin(π/2+B),求a,b的值
答
先化简方程一:
cos(π/2-A)=2*1/2 cos(3π/2+B)
cos(π/2-A)= cos[2π-(π/2-B)]
sinA= cos(π/2-B)
sinA= sinB.(1)
再化简方程二:
3*1/2 sin(3π/2-A)=-2*1/2 sin(π/2+B)
3 sin[2π-(π/2+A)]=-2 sin(π/2+B)
-3 sin(π/2+A)=-2 sin(π/2+B)
3 sin(π/2+A)=2 sin(π/2+B)
3 sin[π-(π/2-A)]=2 sin[π-(π/2-B)]
3 sin(π/2-A)=2 sin(π/2-B)
3 cosA=2 cosB
cosA=2/3 cosB.(2)
(1)^2 + (2)^2:
sin^2A+cos^2A=sin^2B+4/9 cos^2B.(3)
1=5/9 sin^2B+4/9
5/9sin^2B=5/9
sinB=±1.(4)
将(4)代入(1)得:
sinA=±1
∴A=B=2kπ±π/2