如何证明根号2加根号3再加根号5是无理数

问题描述:

如何证明根号2加根号3再加根号5是无理数

设a=√2+√3+√5>0是有理数则a-(√2+√3)=√5 两边平方[a-(√2+√3)]^2=5 是有理数所以a^2+2+3-2a(√2+√3)+2√6=5 1)==》 -a(√2+√3)+√6 为有理数平方得到 a^2(2+3+2√6)+6-2a√3-3a√2为有理数 2)==》1...