设z=sinx+F(siny-sinx),其中F为可微函数,求证:(偏z/偏x)cosy+(偏z/偏y)cosx=cosxcosy
问题描述:
设z=sinx+F(siny-sinx),其中F为可微函数,求证:(偏z/偏x)cosy+(偏z/偏y)cosx=cosxcosy
答案是其次的,主要是过程,
答
dz/dx=cosx+(dF(siny-sinx)/dx)*(-cosx)
dz/dy=(dF(siny-sinx)/dy)*(cosy)
(dz/dx)cosy+(dz/dy)cosx=[cosx+(dF(siny-sinx)/dx)*(-cosx)]cosy+(dF(siny-sinx)/dy)*(cosy)cosx
=cosxcosy-(dF(siny-sinx)/dx)*(cosxcosy)+(dF(siny-sinx)/dx)*(cosxcosy)
=cosxcosy