任何实数的平方是非负数的逆命题,否命题和逆否命题
问题描述:
任何实数的平方是非负数的逆命题,否命题和逆否命题
这个题目中,“任何”是一个全称量词,在改写成“若~,”的形式时可以变成存在量词吗?能改的话,怎么改.
答
此命题重新说会变成:如果x是任意一个实数,则x²≥0.
所以逆命题是:如果x²≥0,则x是任意一个实数.换种说法就是:如果一个数的平方是非负数,则这个数是任意实数.
否命题是,存在不是实数的x使得x²<0.换种说法就是:存在非实数使得其平方是负数.
逆否命题是:如果x²<0,则x不是实数.换种说法就是:如果一个数的平方是负数,则这个数不是实数.