大学复变函数题 求幂级数∑(∞,n=1) 负一的N次方除以N的阶乘 且分式乘以Z的N次方的收敛半径
问题描述:
大学复变函数题 求幂级数∑(∞,n=1) 负一的N次方除以N的阶乘 且分式乘以Z的N次方的收敛半径
答
∑[ n=1,∞]{[(-1)^n](z^n)/(n!)},Cn=(-1)^n]/(n!),Cn+1=(-1)^(n+)]/[(n+1)!]λ=lim[n→∞]|(Cn+1)/Cn|=lim[n→∞]|{(-1)^(n+)]/[(n+1)!]/}/[(-1)^n]/(n!)]|=lim[n→∞][1/(n+1)]=0故收敛半径R=1/λ=∞且∑[ n=1,∞]...