已知log2x+logx8=4,求x
问题描述:
已知log2x+logx8=4,求x
答
换底:
logx^8=(log2^8)/log2^x=3/log2^x
原方程变为:
log2^x+3/log2^x=4
(log2^x)^2-4log2^x+3=0
(log2^x-1)(log2^x-3)=0
log2^x=1或log2^x=3
故x=1或x=8