对任意两个正整数X.Y,定义一个运算#,为X#Y=2(2XY-X-Y),若正整数A,B满足A#B=888,则有序对(A,B)共有多少对?
问题描述:
对任意两个正整数X.Y,定义一个运算#,为X#Y=2(2XY-X-Y),若正整数A,B满足A#B=888,则有序对(A,B)共有多少对?
答
A#B= 2(2*A*B - A - B) = 8882*A*B - A - B = 444(2B - 1)A = 444 + BA = (444 + B)/(2B - 1) = 1/2 * (2B - 1 + 889)*(2B - 1) = 1/2 [1 + 889/(2B - 1)]即推得2B - 1 整除889,且除得的商是奇数.889=1×7×127则①2...