观察下列等式:1/1*2=1-1/2,1/2*3=1/2-1/3,1/3*4=1/3-1/4,将以上三个等式两边分别相加得:1/1*2+1/2*3+1/3*4=1-1/2+1/2-1/3+1/3-1/4=1-1/4=3/4.(1)直接写出下
问题描述:
观察下列等式:1/1*2=1-1/2,1/2*3=1/2-1/3,1/3*4=1/3-1/4,将以上三个等式两边分别相加得:1/1*2+1/2*3+1/3*4=1-1/2+1/2-1/3+1/3-1/4=1-1/4=3/4.(1)直接写出下列各式的计算结果:1/1*2+1/2*3+1/3*4+.+1/n(n+1)= (2)猜想并写出;1/n(n+2)=
(3)探究并解方程;1/x(x+3)+1/(x+3)(x+6)+1/(x+6)(x+9)=3/2x+18
答
(1)1/1*2+1/2*3+1/3*4+.+1/n(n+1)= =1-1/2 + 1/2-1/3 + 1/3-1/4 + .+1/n - 1/(n+1)=1 - 1/(n+1)=n/(n+1)(2)猜想并写出;1/n(n+2)= (1/2) [1/n - 1/(n+2)] (就是1/n - 1/(n+2) 整个再除以2)(3)探究并解方程;1/x...