已知数列{an}(n≥1)满足an+2=an+1-an,且a2=1.若数列的前2011项之和为2012,则前2012项的和等于(  ) A.2011 B.2012 C.2013 D.2014

问题描述:

已知数列{an}(n≥1)满足an+2=an+1-an,且a2=1.若数列的前2011项之和为2012,则前2012项的和等于(  )
A. 2011
B. 2012
C. 2013
D. 2014

∵设a1=m,
由于a2=1,且an+2=an+1-an
∴a3=1-m.a4=-m,a5=-1,a6=m-1,a7=m,a8=1,a9=1-m…
∴数列{an}是周期为6的周期函数,且前6项和为0,
∴数列的前2011项之和为:m
⇒m=2012,
则前2012项的和等于2012+1=2013.
故选C.