设a、b、c均为正实数,求证:1/2a+1/2b+1/2c≥1/(b+c)+1/(c+a)+1/(a+b)
问题描述:
设a、b、c均为正实数,求证:1/2a+1/2b+1/2c≥1/(b+c)+1/(c+a)+1/(a+b)
若x>0,y>0,且x≠y,求证:1/x+1/y>4/(x+y)
若x>0,y>0,z>0,且x,y,z不全相等,求证:1/x+1/y+1/z>9/(x+y+c)
答
设a、b、c均为正实数,求证:1/2a+1/2b+1/2c≥1/(b+c)+1/(c+a)+1/(a+b)
1/4a+1/4b
=(a+b)/4ab
≥(a+b)/(a+b)^2
=1/(a+b)
同理1/4b+1/4c≥1/(b+c)
1/4c+1/4a≥1/(c+a)
由以上三式可得1/2a+1/2b+1/2c≥1/(a+b)+1/(b+c)+1/(c+a)
若x>0,y>0,且x≠y,求证:1/x+1/y>4/(x+y)
因为 xy=(x+y)/{(x+y)/2}^2
即有 1/x+1/y>=4/(x+y)
若x>0,y>0,z>0,且x,y,z不全相等,求证:1/x+1/y+1/z>9/(x+y+z)
1/x+1/y+1/z=[(x+y+z)/x+(x+y+z)/y+(x+y+z)/z ]/(x+y+z)
=[3+(y/x+x/y)+(x/z+z/x)+(z/y+y/z) ]/(x+y+z)
>=[3+2+2+2]/(x+y+z)=9/(x+y+z),(用均值不等式)
X=Y=Z时等号成立.因为X,Y,Z不全等,所以上式取不到"=".