如图,设点P是边长为a的正三角形ABC的边BC上一点,过点P作PQ⊥AB,垂足为Q,延长QP交AC的延长线于点R.当点P在何处时,△BPQ与△CPR的面积之和取最大(小)值?并求出最大(小)值.

问题描述:

如图,设点P是边长为a的正三角形ABC的边BC上一点,过点P作PQ⊥AB,垂足为Q,延长QP交AC的延长线于点R.当点P在何处时,△BPQ与△CPR的面积之和取最大(小)值?并求出最大(小)值.

在Rt△BPQ中,设PB=x,由∠B=60°,得:
BQ=

x
2
,PQ=
3
2
,从而有PC=CR=a-x,
∴△BPQ与△CPR的面积之和为:
S=
3
8
x2+
3
4
(a-x)2=
3
3
8
(x-
2
3
a)2+
3
12
a2
∵0≤x≤a,
∴当x=0时,S取最大值
3
4
a2
当x=
2
3
a时,S取最小值
3
12
a2