函数f(x)x在正实数下满足;f(a)=1(a>1),f(x^m)=mf(x)求证:f(xy)=f(x)+f(y) 昨天

问题描述:

函数f(x)x在正实数下满足;f(a)=1(a>1),f(x^m)=mf(x)求证:f(xy)=f(x)+f(y) 昨天

令y=x^t
f(y)=f(x^t)=t*f(x)
f(x)+f(y)=(1+t)f(x)
f(xy)=f[x^(t+1)]=(1+t)f(x)
所以f(xy)=f(x)+f(y)