P是线段AB上的一点,在AB的同侧作三角形APC和三角形BPD,使PC=PA,PD=PB,角APC=角BPD,连接CD,点E,F,G,H分别是AC,AB,BD,CD的中点,顺次连接E,F,G,H.

问题描述:

P是线段AB上的一点,在AB的同侧作三角形APC和三角形BPD,使PC=PA,PD=PB,角APC=角BPD,连接CD,点E,F,G,H分别是AC,AB,BD,CD的中点,顺次连接E,F,G,H.
请问:四边形FEGH的形状

连接AD,BC.∵∠APC=∠BPD,∴∠APC+∠CPD=∠BPD+∠CPD.即∠APD=∠CPB.又∵PA=PC,PD=PB,∴△APD≌△CPB(SAS)∴AD=CB.∵E、F、G、H分别是AC、AB、BD、CD的中点,∴EF、FG、GH、EH分别是△ABC、△ABD、△BCD、△ACD...