等比数列s10=10,s20=30,s30=?,为什么说每10项的和S10,S20-S10,S30-S20成等比数列

问题描述:

等比数列s10=10,s20=30,s30=?,为什么说每10项的和S10,S20-S10,S30-S20成等比数列
根据等比数列求和公式:Sn=a1(1-qn)/(1-q),得
S10= a1(1-q10)/(1-q),
S20= a1(1-q20)/(1-q),
S30= a1(1-q30)/(1-q)
∵S20/S10=(1-q20)/ (1-q10)= (1+q10) (1-q10) / (1-q10)= (1+q10)=3,
∴3=1+q10
∴q10=2
q20=22=4
q30=23=8
又∵S10= a1(1-q10)/(1-q)= a1(1-2)/(1-q)= -a1/(1-q)=10
∴a1/(1-q)=-10
∴S30= a1(1-q30)/(1-q)= a1(1-8) /(1-q)=-7 a1/(1-q)=70
回答者:zxqsyr 的同理得S30= a1(1-q20)/(1-q)= a1(1-4) /(1-q)=-3 a1/(1-q)=30 ,不对,应是S30= a1(1-q30)/(1-q)= a1(1-8) /(1-q)=-7 a1/(1-q)=70 ,问题是题目本身就是求S30的,在求S30值之前,并不知s30-s20=70-30=40 ,当然也就不知(s30-s20)/(s20-s10)=(s20-s10)/s10=2 ,以及每10项的和S10,S20-S10,S30-S20成等比数列了。但回答者:幸福的kitty 在解之前就说,每10项的和S10,S20-S10,S30-S20成等比数列,并用这原理求S30,这逻辑不严密。他的解法如下:
每10项的和S10,S20-S10,S30-S20成等比数列
设S30=X
S10=10
S20-S10=20
S30-S20=X-30
(X-30)*10=20^2
X=70
所以S30=70
因此,我认为还是用本人的方法求S30更好。本人的求法如下:
根据等比数列求和公式:Sn=a1(1-qn)/(1-q),得
S10= a1(1-q10)/(1-q),
S20= a1(1-q20)/(1-q),
S30= a1(1-q30)/(1-q)
∵S20/S10=(1-q20)/ (1-q10)= (1+q10) (1-q10) / (1-q10)= (1+q10)=3,
∴3=1+q10
∴q10=2 q20==4 q30==8
又∵S10= a1(1-q10)/(1-q)= a1(1-2)/(1-q)= -a1/(1-q)=10
∴a1/(1-q)=-10
∴S30= a1(1-q30)/(1-q)= a1(1-8) /(1-q)=-7 a1/(1-q)=70

根据等比数列求和公式:Sn=a1(1-qn)/(1-q),得 S10= a1(1-q10)/(1-q),S20= a1(1-q20)/(1-q),S30= a1(1-q30)/(1-q) ∵S20/S10=(1-q20)/ (1-q10)= (1+q10) (1-q10) / (1-q10)= (1+q10)=3,∴3=1+q10 ∴q10=2 q20=22=4 q3...