已知,如图,在四边形ABCD中,∠B+∠D=180°,AB=AD,E,F分别是线段BC,CD上的点,且BE+FD=EF.求证:∠EAF=1/2∠BAD.

问题描述:

已知,如图,在四边形ABCD中,∠B+∠D=180°,AB=AD,E,F分别是线段BC,CD上的点,且BE+FD=EF.求证:∠EAF=

1
2
∠BAD.

证明:把△ADF绕点A顺时针旋转∠DAB的度数得到△ABG,AD旋转到AB,AF旋转到AG,如图,
∴AG=AF,BG=DF,∠ABG=∠D,∠BAG=∠DAF,
∵∠B+∠D=180°,
∴∠B+∠ABG=180°,
∴点G、B、C共线,
∵BE+FD=EF,
∴BE+BG=GE=EF,
在△AEG和△AEF中,

AG=AF
AE=AE
EG=EF

∴△AEG≌△AEF,
∴∠EAG=∠EAF,
而∠BAG=∠DAF,
∴∠EAB+∠DAF=∠EAF,
∴∠EAF=
1
2
∠BAD.