已知两圆x^2+y^2-6x-8y=0与x^2+y^2-2x-4y+a=0相切,则实数a值为

问题描述:

已知两圆x^2+y^2-6x-8y=0与x^2+y^2-2x-4y+a=0相切,则实数a值为

x^2+y^2-6x-8y=0 ==>(x-3)^2+(y-4)^2=5^2
x^2+y^2-2x-4y+a=0 ==> (x-1)^2+(y-2)^2=5-a
两圆的圆心距d=√((3-1)^2+(4-2)^2)=2√2 另一个答案-28-20根号2不行么哦,确实还有一个,你是对的.√(5-a)=5+da=5-(5+2√2)^2=-20√2-28