观察下列各式(x-1)(x²+x+1)=x²-1,(x-1)(x³+x²+1)=x四次方-1
问题描述:
观察下列各式(x-1)(x²+x+1)=x²-1,(x-1)(x³+x²+1)=x四次方-1
根据以上算式,求出1+2+2²+·········+X六十二次方+2六十三次方的结果是
答
xⁿ - 1 = (x - 1)(xⁿ-¹ + xⁿ-² + ...+ x + 1)根据以上算式,求出1+2+2²+·········+X六十二次方+2六十三次方的结果是1 + 2 + ... + 2ⁿ = 2ⁿ+¹- 11 + 2 + 2² + ... + 2^63 = 2^64 - 11 + x + x² + ... + x^63 = (x^64 - 1)/ (x - 1)``````````````````````````,注意例题是乘,问题是加(2 - 1)(1 + 2 + 2² + ... + 2^63) = 2^64 - 1 (x - 1)(1 + x + x² + ... + x^63) = x^64 - 1