初一下全练数学题,急用.

问题描述:

初一下全练数学题,急用.
已知ax^3=by^3=cz^3,且1/x+1/y+1/z=1,说明3√ax^2+by^2+cz^2=3√a+3√b+3√c.
在线等,谢谢了!

设aX^3=bY^3=cZ^3=k
则a=k/(x^3)
b=k/(y^3)
c=k/(z^3)
所以
左边(3次根号ax^2+by^2+cz^2)
=3次根号((k/(x^3)*x^2)+(k/(y^3)*y^2)+(k/(z^3)*z^2))
=3次根号(k/x+k/y+k/z)
=3次根号(k)
右边(3次根号a+3次根号b+3次根号c)
=3次根号(k/(x^3))+3次根号(k/(y^3))+3次根号(k/(z^3))
=(1/x+1/y+1/z)*3次根号(k)
=3次根号(k)
所以左边=右边