设曲线y=f(x)上任一点(x,y)处切线斜率为y/x加上x的平方, 且该曲线过点(1,1/2) 求曲线y=f(x)
问题描述:
设曲线y=f(x)上任一点(x,y)处切线斜率为y/x加上x的平方, 且该曲线过点(1,1/2) 求曲线y=f(x)
答
已知dy/dx=f'(x)=y/x+x²,则有dy/dx-y/x=x²对应的齐次线性微分方程为dy/dx-y/x=0变形,得dy/y=dx/x两边积分,得Ln丨y丨=Ln丨x丨+c通解为y=c(x)x代入原方程,得c’(x)x+c(x)=c(x)+x²,即c’(x)=x...