如图,点O为矩形ABCD对角线的交点,过点O作EF垂直AO分别交AD与BC于点F,E,若AB=2cm,Bc=4CM,求四边形AECF的面积

问题描述:

如图,点O为矩形ABCD对角线的交点,过点O作EF垂直AO分别交AD与BC于点F,E,若AB=2cm,Bc=4CM,求四边形AECF的面积

因为:四边形ABCD是矩形所以:∠ABC=90,AD//CB,AO=CO所以:∠FAO=∠ECO,∠AFO=∠CEO所以:△AFO≌△CEO所以:FO=EO所以:四边形AECF为菱形,AE=CE 设BE=x,则CE=4-x,AE=4-x在RT△ABE中AB^2+BE^2=AE^2 即4+X^2=(4-X)^2 解得:x...