已知:如图,在Rt△ABC中,∠ACB=90°,AC=BC,D是AB的中点,E、F分别在AC、BC上,且ED⊥FD.求证:S四边形EDFC=1/2S△ABC.
问题描述:
已知:如图,在Rt△ABC中,∠ACB=90°,AC=BC,D是AB的中点,E、F分别在AC、BC上,且ED⊥FD.求证:S四边形EDFC=
S△ABC.1 2
答
证明:连接CD,
∵△ABC是等腰直角三角形,D是AB的中点,
∴CD=AD=BD,∠A=∠B=∠ACD=∠BCD=45°,CD⊥AB.
∵∠CDF+∠CDE=∠CDE+∠EDA=90°,
∴∠CDF=ADE.
∴△CDF≌△ADE.
同理△CED≌△BFD,
∴S△CDF=S△ADE,S△CED=S△BFD.
∴S四边形EDFC=
S△ABC.1 2