根据x△y=Ax+y/xy ,且5△6=6△5,求(3△2)×(1△10)的值,注:/是分数线,xy是分母,Ax+y是分子,

问题描述:

根据x△y=Ax+y/xy ,且5△6=6△5,求(3△2)×(1△10)的值,注:/是分数线,xy是分母,Ax+y是分子,

(5A+6)/30=(6A+5)/30
5A+6=6A+5
A=1
∴3⊿2=(3+2)/6=5/6 1⊿10=(1+10)/10=11/10
∴(3⊿2)*(1⊿10)=5/6*11/10=11/12