如图,直线y=kx+2与x轴、y轴分别交于点A、B,点C(1,a)是直线与双曲线y=mx的一个交点,过点C作CD⊥y轴,垂足为D,且△BCD的面积为1.(1)求双曲线的解析式;(2)若在y轴上有一点E,使得以E、A、B为顶点的三角形与△BCD相似,求点E的坐标.
问题描述:
如图,直线y=kx+2与x轴、y轴分别交于点A、B,点C(1,a)是直线与双曲线y=
的一个交点,过点C作CD⊥y轴,垂足为D,且△BCD的面积为1.m x
(1)求双曲线的解析式;
(2)若在y轴上有一点E,使得以E、A、B为顶点的三角形与△BCD相似,求点E的坐标.
答
知识点:本题考查了反比例函数的综合应用,关键是求交点C的坐标以及相似形中的分类讨论思想,搞清楚对应关系.
(1)∵CD=1,△BCD的面积为1,∴BD=2∵直线y=kx+2与x轴、y轴分别交于点A、B,∴当x=0时,y=2,∴点B坐标为(0,2).∴点D坐标为(O,4),∴a=4.∴C(1,4)∴所求的双曲线解析式为y=4x.(2)因为直线y=kx+2过C...
答案解析:(1)直线y=kx+2与y轴交于B点,则OB=2;由C(1,a)及△BCD的面积为1可得BD=2,所以a=4,即C(1,4),分别代入两个函数关系式中求解析式;
(2)根据△BAE∽△BCD、△BEA∽△BCD两种情形求解.
考试点:反比例函数综合题;相似三角形的性质.
知识点:本题考查了反比例函数的综合应用,关键是求交点C的坐标以及相似形中的分类讨论思想,搞清楚对应关系.