锐角三角形△ABC的外心为O,外接圆半径为R,延长AO,BO,CO,分别与对边BC,CA,AB交于D,E,F;证明:1/AD+1/BE+1/CF=2/R.
问题描述:
锐角三角形△ABC的外心为O,外接圆半径为R,延长AO,BO,CO,分别与对边BC,CA,AB交于D,E,F;证明:
+1 AD
+1 BE
=1 CF
.2 R
答
证明:延长AD交⊙O于M,由于AD,BE,CF共点O,ODAD=S△OBCS△ABC,OEBE=S△OACS△BAC,OFCF=S△OABS△CAB,…5’则ODAD+OEBE+OFCF=1…①…10’而ODAD=R−DM2R−DM=1−R2R−DM=1−RAD,…15’同理有,OEBE=1...