设a,b均为大于1的正数,且ab+a-b-10=0,若a+b的最小值为m,则满足3x2+2y2≤m的整点(x,y)的个数为( ) A.5 B.7 C.9 D.11
问题描述:
设a,b均为大于1的正数,且ab+a-b-10=0,若a+b的最小值为m,则满足3x2+2y2≤m的整点(x,y)的个数为( )
A. 5
B. 7
C. 9
D. 11
答
由ab+a-b-10=0可得b=9a−1−1,a+b=9a−1+a−1≥6;即m=6,满足不等式3x2+2y2≤6的点在椭圆x22+y23=1上及其内部,分析可得其整点共有9个,分别为(0,0),(0,1),(0,-1),(1,0),(-1,0),(1,1),...