由椭圆x^2/a^2+y^2/a^2=1(A>B>0)的顶点B(0,-b)作一弦BP,求弦BP的最大值
问题描述:
由椭圆x^2/a^2+y^2/a^2=1(A>B>0)的顶点B(0,-b)作一弦BP,求弦BP的最大值
答
由对称性,
设点P的坐标为 (acost,bsint) 0 0,g(u)单调递增.
g(u) a/2^(1/2)时,弦BP的最大值为2b.