已知正实数xyzw满足2007^2=2008y^2=2009z^2=2010w^2,且1/x+1/y+1/z+1/w=1,求(根号2007x+2008y+2009z+2010w

问题描述:

已知正实数xyzw满足2007^2=2008y^2=2009z^2=2010w^2,且1/x+1/y+1/z+1/w=1,求(根号2007x+2008y+2009z+2010w
已知正实数xyzw满足2007x^2=2008y^2=2009z^2=2010w^2,且1/x+1/y+1/z+1/w=1,求根号下(2007x+2008y+2009z+2010w )的值

设2007x²=2008y²=2009z²=2010z²=A ,
得到:2007x=A/x,2008y=A/y,2009z=A/z,2010w=A/w;
所以:2007x+2008y+2009z+2010w =A/x+A/y+A/z+A/w=A(1/x+1/y+1/z+1/w)=A.【2007x²】或【2008y²】或--------.