若x/2=1/y=z/3,且xy+xz+yz=99,求4x^2-2xz+3yz-9y^2的值.
问题描述:
若x/2=1/y=z/3,且xy+xz+yz=99,求4x^2-2xz+3yz-9y^2的值.
答
应该是设X/2=Y/1=Z/3=K
则X=2K Y=K Z=3K
则有 xy+xz+yz=99
2K^2+6K^2+3K^2=99 ==>K^2=9
所以4x^2-2xz+3yz-9y^2
=2X(2X-Z)+3Y(Z-3Y)=4K*K+3K*0=4K^2=36