利用完全立方公式推导
问题描述:
利用完全立方公式推导
1+2+…+n=n(n+1)(2n+1)/6
答
(利用恒等式(n+1)^3=n^3+3n^2+3n+1):(n+1)^3-n^3=3n^2+3n+1,n^3-(n-1)^3=3(n-1)^2+3(n-1)+1 .3^3-2^3=3*(2^2)+3*2+1 2^3-1^3=3*(1^2)+3*1+1.把这n个等式两端分别相加,得:(n+1)^3-1=3(1^2+2^2+3^2+.+n^2)+3(1+2+3+...+n)+n,由于1+2+3+...+n=(n+1)n/2,代入上式得:n^3+3n^2+3n=3(1^2+2^2+3^2+.+n^2)+3(n+1)n/2+n 整理后得:1^2+2^2+3^2+.+n^2=n(n+1)(2n+1)/6 a^2+b^2=a(a+b)-b(a-b)