定积分∫|1-x|dx [上限为5下限为0]
问题描述:
定积分∫|1-x|dx [上限为5下限为0]
答
∫|1-x|dx [上限为5下限为0]
=∫(1-x)dx [上限为1下限为0]+∫(x-1)dx [上限为5下限为1]
=[x-x^2/2][上限为1下限为0]+[x^2/2-x] [上限为5下限为1]
=1-1/2+25/2-5-1/2+1
=17/2