证明sinA+sinC=2sin(A+C)/2 * cos(A-C)/2
问题描述:
证明sinA+sinC=2sin(A+C)/2 * cos(A-C)/2
答
A=(A+C)/2+(A-C)/2
C=(A+C)/2-(A-C)/2
左边=[sin(A+C)/2cos(A-C)/2+cos(A+C)/2sin(A-C)/2]+[sin(A+C)/2cos(A-C)/2-cos(A+C)/2sin(A-C)/2]
=2sin(A+C)/2cos(A-C)/2