公理与公设的区别

问题描述:

公理与公设的区别

以下是欧几里得的五大公设:
公设一:任两点必可用直线连接
公设二:直线可以任意延长
公设三:可以任一点为圆心,任意长为半径画圆
公设四:所有的直角皆相同
公设五:过线外一点,恰有一直线与已知直线平行
其中公设五又称之为平行公设,因为它不如其它公设简洁,看起来倒更像个命题,在鲍耶和罗巴切夫斯基把第五公设去掉之后,他们发现的非欧几何.
欧几里德几何学全部公理:
点是没有部分的
线是平面上只有长度,没有宽度的
直线是可以相两边无限延伸的
过两点有且只有一条直线
平面内过一点可以任何半径画圆
两直线平行,同位角相等
等量+等量和相等
等量—等量差相等
能重合的图形全等
整体大于部分
简单来说,公设是就图形而言的,而公理是就数量而言的.