如图,矩形ABCD被分割成六个正方形,其中最小正方形的面积等于4,则矩形ABCD的周长为_,面积为_.
问题描述:
如图,矩形ABCD被分割成六个正方形,其中最小正方形的面积等于4,则矩形ABCD的周长为______,面积为______.
答
由最小正方形的面积为4,得到边长为2,
设左下角正方形的边长为x,
根据题意得:x+x-2+x-2=x+2+x+4,
解得:x=10,
∴AD=3x-4=26,AB=x+x+2=2x+2=22,
则矩形ABCD的周长为2×(26+22)=96;面积为26×22=572.
故答案为:96;572.