f(x)在[0,1]上连续,在(0,1)内可导.f(0)=f(1)=0,f(1/2)=1,证明在(0,1)内至少存在一点使f'(x)=1
问题描述:
f(x)在[0,1]上连续,在(0,1)内可导.f(0)=f(1)=0,f(1/2)=1,证明在(0,1)内至少存在一点使f'(x)=1
答
令g(x)=f(x)-x,g(0)=0,g(1)=-1,g(1/2)=1/2,由介值定理(这里也可以是零点定理)可知在x=1/2到1之间有一点可使得g(x)等于0,再由罗尔定理易知:在(0,1)上有一点可使得g'(x)=0,那么g'(x)=f'(x)-1=0,即:f'(x)=1