某商人如果将进货单价为8元的商品按每件10元出售时,每天可销售100件,现在他采用提高售价,减少进货量的办法增加利润.已知这种商品每件销售价提高1元,销售量就要减少10件,如果使得
问题描述:
某商人如果将进货单价为8元的商品按每件10元出售时,每天可销售100件,现在他采用提高售价,减少进货量的办法增加利润.已知这种商品每件销售价提高1元,销售量就要减少10件,如果使得每天所赚的利润最大,那么他将销售价每件定为( )
A. 11元
B. 12元
C. 13元
D. 14元
答
设销售价每件定为x元,则每件利润为(x-8)元,销售量为[100-10(x-10)],
根据利润=每件利润×销售量,可得销售利润y=(x-8)•[100-10(x-10)]=-10x2+280x-1600=-10(x-14)2+360,
∴当x=14时,y的最大值为360元,
∴该商人应把销售价格定为每件14元,可使每天销售该商品所赚利润最多.
故选D.