求xy+cosy^2=x^2的导数y’

问题描述:

求xy+cosy^2=x^2的导数y’

xy+cosy^2=x^2.两边同时对x求导得:
y+xy'-2y'*y*sin(y^2)=2x.(cos(y^2)关于x的导数是:-2y'*y*sin(y^2))
y'(x-2ysin(y^2))=2x-y.
所以:y'=(2x-y)/(x-2ysin(y^2)).