已知三角形ABC分别以三角形ABC的AC,BC边为腰,A,B为直角顶点,做等腰直角三角形ACE,BCD,M为ED中点.求证AM垂直于BM
已知三角形ABC分别以三角形ABC的AC,BC边为腰,A,B为直角顶点,做等腰直角三角形ACE,BCD,M为ED中点.求证AM垂直于BM
延长AM至F,使MF=AM,连接DF,BF,延长AC交DF于G
因为 M为ED中点
所以 MD=ME
因为 MF=AM,角DMF=角EMA
所以 三角形DMF全等于三角形EMA
所以 角MDF=角MEA
所以 DF//AE
因为 等腰直角三角形ACE,BCD
所以 角GAE=90度,角DBC=90度
因为 DF//AE
所以 角DGC=角GAE=90度
因为 角DBC=90度
所以 在DGCB中 角BDF+角BCG=360-90-90=180度
因为 角BCA+角BCG=180度
所以 角BDF=角BCA
因为 等腰直角三角形ACE,BCD
所以 BD=BC,AE=AC
因为 三角形DMF全等于三角形EMA
所以 DF=AE
因为 AE=AC
所以 DF=AC
因为 角BDF=角BCA,BD=BC
所以 三角形BDF全等于三角形BCA
所以 BF=BA
所以 三角形BFA是等腰三角形
因为 MF=AM
所以 BM垂直AF
所以 AM垂直于BM
【太过草率 - 门吏 二级】的证明有误,楼主试着通过角度关系证明一下∠BMA两侧的角度之和为90°。
我就是不清楚M为ED中点这个条件怎么用。
延长AM至F,使MF=AM,连接DF,BF,延长AC交DF于G 因为 M为ED中点 所以 MD=ME 因为 MF=AM,角DMF=角EMA 所以 三角形DMF全等于三角形EMA 所以 角MDF=角MEA 所以 DF//AE 因为 等腰直角三角形ACE,BCD 所以 角GAE=90度,角DBC=9...
证明:
在等腰直角三角形EAM中,有角AEM=角AME=45度
在等腰直角三角形BDM中,有角BDM=角BMD=45度
所以有角AMB=180度-角AME-角BMD=90度
即AM垂直于BM