把正方形ABCD沿对角线AC折成直二面角,点E,F分别为AD,BC的中点,点O是原正方形ABCD的中心,求折起后角EOF
问题描述:
把正方形ABCD沿对角线AC折成直二面角,点E,F分别为AD,BC的中点,点O是原正方形ABCD的中心,求折起后角EOF
答
过F作FG垂直于AC,G在AC上,连接GE;因为二面角B-AC-D为直二面角,所以FG垂直于平面ACD(直二面角的性质),因为FO为平面ADC的斜线,OE在平面ADC内,套用折叠角公式(俗称三扣定理),得:cos角EOF=cos角FOG*cos角GOE...(1)...